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A B S T R A C T   

Through the control of excessive daylight in buildings, shading devices can reduce glare and 
improve occupants’ visual comfort. However, shading devices may overly reduce illuminance 
levels. Many shading strategies are available, but they do not perform equally well, and tradi-
tionally, it has been difficult to select the most suitable shading strategy. This study proposed a 
parameterization method for the selection and design of a shading strategy that would reduce 
glare while maintaining a satisfactory daylighting level, through the construction of Pareto sets 
based on a multi-objective genetic algorithm. The objective function was created by combining a 
dynamic glare evaluation indicator, the spatial glare autonomy (sGA), and a self-constructed 
daylight index, the spatial daylight vote autonomy (sDVA), developed from a field survey. As a 
case study, the proposed method was used to compare the performance of four shading strategies, 
including vertical slats (Vs), a perforated aluminum sheet (PAS), serrated windows with southern 
orientation (Sw_S), and serrated windows with northern orientation (Sw_N) in a university library 
in Shanghai, China. It was found that the Sw_S and PAS had a relatively bad performance; the Vs 
performed better than the Sw_N in providing a more satisfactory illuminance level; and the Sw_N 
was more effective in reducing the glare. The multi-objective optimization process can be used to 
obtain near-optimal design parameters that create a visual environment with reduced glare while 
maintaining an acceptable illuminance level, for all four shading strategies. The developed 
method can be a helpful tool in the design of an appropriate daylighting environment.  

* Corresponding author. 
E-mail address: dayi_lai@sjtu.edu.cn (D. Lai).  

Contents lists available at ScienceDirect 

Journal of Building Engineering 

journal homepage: www.elsevier.com/locate/jobe 

https://doi.org/10.1016/j.jobe.2022.105532 
Received 28 August 2022; Received in revised form 30 October 2022; Accepted 8 November 2022   

mailto:dayi_lai@sjtu.edu.cn
www.sciencedirect.com/science/journal/23527102
https://www.elsevier.com/locate/jobe
https://doi.org/10.1016/j.jobe.2022.105532
https://doi.org/10.1016/j.jobe.2022.105532
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jobe.2022.105532&domain=pdf
https://doi.org/10.1016/j.jobe.2022.105532


Journal of Building Engineering 63 (2023) 105532

2

Nomenclature 

Abbreviations 
ANN Artificial Neural Network 
ASE Annual Sunlight Exposure 
CFS Complex Fenestration Systems 
CI Confidence Interval 
DGP Daylight Glare Probability 
DGI Daylight Glare Index 
DA Daylight Autonomy 
DVA Daylight Vote Autonomy 
Hs Horizontal slats 
MOGA Multi-Objective Genetic Algorithm 
MSE Mean Square Error 
MAE Mean Absolute Error 
NSGA-II Nondominated Sorting Genetic Algorithm-II 
PAS Perforated Aluminum Sheet 
PSO Particle Swarm Optimization 
RMSE Root Mean Square Error 
R2 The coefficient of determination 
Sw Serrated windows 
Sw_S Serrated windows facing South 
Sw_N Serrated windows facing North 
SOGA Single-Objective Genetic Algorithm 
sDA Spatial Daylight Autonomy 
sDVA Spatial Daylight Vote Autonomy 
sDVAbest Best performance of sDVA 
sDVA0.30/80% The sDVA that DSV threshold to 0.30 and temporal fraction threshold to 80% 
sGA Spatial Glare Autonomy 
sGAbest Best performance of sGA 
sGA0.35/95% The sGA that DGP threshold to 0.35 and temporal fraction threshold to 95% 
TCI Thermal Comfort Index 
TEC Total Energy Consumption 
UDI Useful Daylight Illuminance 
Vs Vertical Slats 
WWR Window-to-Wall Ratio 

Symbols 
dti The amount of time lower than the daylight subjective vote (DSV) threshold of sDVA at point i 
Eh Horizontal illuminance (lux) 
gti The quantity lower than the Daylight Glare Probability (DGP) threshold of sGA at point i 
lux Illuminance (lm/m2) 
Ls The luminance of the glare source (lux) 
n The number of glare sources 
P The position index 
tx The number of annual daytime hours 
ty The number of annual daytime hours 
ωs The solid angle of the glare source 
τ The temporal fraction threshold 
γ The temporal fraction threshold  

1. Introduction 

Lighting accounts for 15% of the total energy consumption (TEC) in buildings [1]. Daylighting, as a passive strategy, is an 
important way to reduce energy consumption and carbon emission. At the same time, natural light has health benefits [2,3] and can 
improve occupants’ working efficiency [4,5]. According to Xue et al. [6], occupants’ luminous comfort is most influenced by their level 
of satisfaction with natural light. However, uncontrolled excessive daylight will cause glaring problems [7]. For example, Beck et al. 
[8] found that excessive direct sunlight in some school buildings resulted in increased levels of visual discomfort due to glare. 
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Table 1 
Strategies, objective functions, and optimization algorithms were used in previous studies.  

Author and Year of Publication Shading strategy Objective function Optimization algorithm 

Hs Vs CFS WWR DGP DGI sDA ASE UDI TCI Illuminance TEC SOGA MOGA PSO 

Torres and Sakamoto 2007 [10]  ✓   ✓      ✓  ✓   
Gagne and Andersen 2010 [15] ✓ ✓  ✓ ✓      ✓   ✓  
Lartigue et al., 2013 [13]    ✓       ✓ ✓  ✓  
Manzan 2014 [11] ✓        ✓   ✓  ✓  
González and Fiorito 2015 [16] ✓        ✓   ✓  ✓  
Vera et al., 2017 [12]   ✓    ✓ ✓    ✓   ✓ 
Kirimtat et al., 2019 [17] ✓        ✓   ✓  ✓  
Zhai et al., 2019 [18]    ✓      ✓ ✓ ✓  ✓  
Jalali et al., 2020 [19]    ✓     ✓   ✓  ✓  
Bakmohammadi and Noorzai 2020 [20]    ✓ ✓  √(DA)  ✓   ✓  ✓  
Naderi et al., 2020 [21] ✓     ✓    ✓  ✓  ✓  
Pilechiha, Mahdavinejad et al., 2020 [22]    ✓   ✓ ✓    ✓  ✓  
Bahdad et al., 2021 [23] ✓    ✓    ✓   ✓  ✓  
Ishac and Nadim 2021 [24] ✓    ✓      ✓   ✓  
Khidmat, Fukuda et al., 2022 [25]     ✓  ✓ ✓      ✓  

Shading strategies: Hs = Horizontal slats; Vs = Vertical slats; CFS = Complex Fenestration Systems; WWR = Window-to-Wall Ratio; Sw = Serrated windows; 
Objective functions: DGP = Daylight Glare Probability; DGI = Daylight Glare Index; sDA = spatial Daylight Autonomy; ASE = Annual Sunlight Exposure; UDI = Useful Daylight Illuminance; TCI = Thermal Comfort Index; TEC =
Total Energy Consumption; 
Optimization algorithm: SOGA = Single-Objective Genetic Algorithm; MOGA = Multi-Objective Genetic Algorithm; PSO = Particle Swarm Optimization. 
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Therefore, shading systems are used to control direct daylight and prevent visual discomfort [9]. 
Although shading systems can block direct sunlight and reduce glare, the addition of shading devices may overly reduce horizontal 

illuminance levels, which in turn decreases occupants’ satisfaction with the daylight environment. Changing the design may improve 
one performance metric but worsen another. Thus, the design of a shading system is a multi-objective problem with contradictory 
goals. Many researchers have conducted optimization studies on shading strategies with various objectives, as summarized in Table 1. 
For instance, Torres and Sakamoto [10] optimized the size, number, and position of vertical slats (Vs) by combining the daylight glare 
probability (DGP) and illuminance as the objective function. Manzan [11] studied the design of horizontal slats (Hs) and obtained a 
design solution that reduced energy consumption by 19% in Trieste and 30% in Rome. Vera et al. [12] optimized a complex fenes-
tration system (CFS) with spatial daylight autonomy (sDA), annual sunlight exposure (ASE), and TEC as design objectives. Other 
researchers [13,14] optimized the window-to-wall ratio (WWR) based on daylight performance and air conditioning load. These 
studies have provided useful frameworks and valuable information for finding an appropriate design parameter for shading 
components. 

However, the above studies each focused on only a single strategy. In practice, different shading systems have different 

Fig. 1. The process used to optimize a shading device based on MOGA.  
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“performance curves”. When designing a suitable daylight environment, it is essential to compare the performance of various shading 
strategies. Wienold et al. [26] simulated and compared the energy and comfort performance of different shading strategies including 
venetian blind, Retrolux blind, and venetian blind + rollo blind. Day et al. [27] evaluated three shading strategies, including auto-
mated Venetian slats, electrochromic glass, and automated fabric shade screens, by subjective perception. The strategies in Refs. [26, 
27] were only compared at fixed constructions, whereas the performance of a shading system varies with the design parameters. Thus, 
a comprehensive comparison with ranges of design parameters is necessary. 

This study proposed a standard method for comparing the performance of different shading strategies. The method was applied in a 
university library as a case study, and four shading strategies, serrated windows with southern orientation, serrated windows with 
northern orientation, vertical slats, and a perforated aluminum sheet, were selected and compared in terms of their ability to reduce 
glare and maintain a satisfactory illuminance level. The following sections describe our method and findings. 

2. Methods 

This section introduces the overall process, simulation tools, artificial neural networks, and objective function for the shading 
strategy optimization and comparison. We validated the daylighting simulation engine by comparing the predicted illuminance with 
the measurement results. We then conducted field surveys to develop a formula to calculate the daylight subjective vote (DSV), which 
is an important component of the objective function. Finally, four shading strategies, namely, a perforated aluminum sheet (PAS), 
vertical slats (Vs), serrated windows with southern orientation (Sw_S), and serrated windows with northern orientation (Sw_N), were 
selected for further comparison in a university library as a case study. 

2.1. Process 

This study attempted to optimize the design parameters of a shading device to reduce glare and improve occupants’ visual 
satisfaction with the daylit space. As displayed in Fig. 1, the optimization process consists of three parts: daylight simulation, artificial 
neural network (ANN) modeling, and a multi-objective genetic algorithm (MOGA) process. The daylight simulation aims to obtain an 
objective function, while the MOGA optimizes the design parameters of the shading device based on the objective function. In addition, 
we use ANN to reduce the simulation time. The following subsections describe the daylight simulation process, the setting of the 
objective function, ANN modeling, and the MOGA process. 

2.1.1. Daylight simulation 
First, daylight simulation is conducted to obtain the value of the objective function, which serves as the basis for optimization. The 

Ladybug and Honeybee platforms from the Grasshopper plugin in Rhino were used for the simulation. The daylight simulation engine 
was based on Radiance software [28]. The geometry of the tested building and shading device needs to be created with material 
properties. Weather information is used to drive the simulation for a certain period. The daylight glare probability (DGP) at test 
viewpoints and the illuminance at test points are then obtained for the calculated location of the objective function. The simulated 
period is set to daylight hours throughout the year to better evaluate the effect of the shading device dynamically. 

2.1.2. Objective function 
To minimize glare and maximize occupants’ visual satisfaction in a dynamic daylight environment, the objective function is set as: 
{

min(sGA)
min(sDVA) (1)  

where sGA is the spatial glare autonomy, and sDVA is spatial daylight vote autonomy. sGA was established by Jones [29], and it is 
about the percentage of test points that meet the defined minimum fraction of glare-free during daylight hours of a year. The sGA 
equation is as follows: 

sGA=

∑N
i=1GT(i)

N
,with GT(i)=

{
1 : gti ≥ τtx
0 : gti < τtx

(2)  

where gti is the quantity lower than the DGP threshold of sGA at point i, tx represents the number of annual daytime hours, τ the 
temporal fraction threshold. In this study, we set the DGP threshold to 0.35 and τ to 95%, namely, sGA0.35/95%. Some researchers 
[30–32] has reported that dynamic metrics is more appreciated for assessing the annual dynamic daylit space than static metric. The 
sGA was the dynamic metric for assessing the glare discomfort of daylit space and was developed according to daylight glare prob-
ability (DGP). Therefore, the DGP threshold is important for the calculation of sGA. Table 3 shows the correlation between DGP and 
glare level. In addition, the DGP can be represented as the equation: 

DGP= 5.87× 10− 5Ev + 9.18× 10− 2 log

(
∑n

i

L2
s,iωs,i

E1.87
v P2

i

)

+ 0.16 (3)  

where Ev the vertical illuminance (lux), Ls the luminance of the glare source (lux), ωs the solid angle of the glare source, P the position 
index, and n the number of glare sources. 

In objective function (1), sDVA is used to quantify people’s satisfaction with the dynamic daylight environment. It is reported as the 
ratio of test points that received a specific minimum fraction of satisfactory threshold during the daylight hours of a year. The sDVA 
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equation is represented as: 

sDVA=

∑N
i=1DT(i)

N
,with DT(i)=

{
1 : dti ≥ γty
0 : dti < γty

(4)  

where dti is the amount of time lower than the daylight subjective vote (DSV) threshold of sDVA at point i, ty represents the number of 
annual daytime hours, γ the temporal fraction threshold. For maintaining the satisfaction level, the temporal faction of the DSV 
threshold would refer to the daylight performance of the study case. In this study, we set the DSV threshold to 0.30 and γ to 80% which 
equates to the average daylight vote autonomy (DVA) in the original daylight environment of the study case, namely, sDVA0.30/80%. 
The satisfaction with daylit space is developed by DSV. Furthermore, DSV was obtained in this study by correlating the subjective 
satisfaction with the daylight environment and the horizontal illuminance level. Section 2.2 details the development of the DSV 
formula. 

2.1.3. Artificial neural network (ANN) 
Artificial intelligence was an effective and feasible tool to generate the prediction model. Many researches [33–36] had applied the 

Artificial Neural network (ANN) in the field of daylighting simulation over the last few years and achieved good performance. As an 
illustration, Nault et al. [34] acquires the dataset through the daylight simulation of parametric modeling and modeled by the multiple 
linear regression to predict the spatial daylight autonomy (sDA). In addition, some researches [37,38] combine the ANN into the 
optimization of shading strategy and present a model that can make the parametric modeling faster. 

2.1.4. Multi-objective genetic algorithm (MOGA) 
This study addressed a multi-objective problem with two objectives that change in opposite directions, so its solution was not 

unique. A solution that is not dominated by another is called a nondominated solution, and the group of nondominated solutions 

Fig. 2. The studied library, plan of the studied area, virtual test points of DSV, DGP, and photos showing actual conditions.  
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generated in the optimized algorithm is called a Pareto set [39,40], which can be obtained by the MOGA. In the MOGA process, the 
first-generation parameters of the shading device are randomly set, and the Pareto set is empty. Next, these nondominated individuals 
are together assumed to constitute the first nondominated front with a large fitness value [41], where the fitness combines 
sGA0.35/95% with sDVA0.30/80%. In the optimized process, if the new solution generated by the optimization process is not 
dominated by another nondominated solution, it replaces the dominated individuals in the original Pareto set or is deposited directly 
into the Pareto set. The MOGA produces a final Pareto set when the generation reaches the pre-set generation. 

The MOGA used in this study was the nondominated sorting genetic algorithm-II (NSGA-II) in the Wallacei X package of the 
Grasshopper plugin. Wallacei optimizes the objective function to a minimum value, and when the objective function needs to be 
maximized, the input objective values should be transformed into complementary values. Recently, the NSGA-II algorithm is 
frequently used by building environment and energy researchers to achieve a balance between energy consumption and occupants’ 
satisfaction [42,43]. 

2.2. Correlating horizontal illuminance with daylight subjective vote (DSV) 

Many previous studies have employed useful daylight illuminance (UDI) [44] as one of the objective functions to optimize the 
parameters of shading devices [11,17,20,23,42]. UDI assumes that occupants are satisfied with the daylight environment under a 
reasonable illuminance range. However, Handina et al. [45] pointed out that occupants’ perceptions of the daylight environment did 
not change consistently with UDI, while Hu et al. [46] found that eye fatigue first decreased and then increased as illuminance 
increased from 0 lux to 1300 lux, and the lowest perception of fatigue was at 700 lux. In other words, UDI assumes the same satisfaction 
within a certain range of illuminance, but people’s actual perception varies with the illuminance level. The same is true for indices such 
as daylight autonomy (DA) [30]. To provide a more accurate assessment, the present study first developed a formula to correlate 
subjective satisfaction with the illuminance level, and then used the developed formula as the basis of the objective function. 

To develop the formula, this study conducted field surveys in the reading areas of a university library and asked occupants about 
their satisfaction with the daylight environment, while the horizontal illuminance level was measured simultaneously at desk height. 
Using the questionnaire designed by Ref. [47], we asked the occupants to vote on their subjective level of satisfaction with the daylight 
environment according to the five scales (1, 0.75, 0.5, 0.25, 0), where smaller values indicated higher satisfaction. The other sections of 
the questionnaire were not directly related to the current study, so they are not discussed here. The field survey was conducted 5 times 
between 9:00 and 17:00 during the period from January 1 to May 30, 2021, and a total of 606 samples were collected. The dataset was 
then used to develop a relationship between horizontal illuminance level and subjective satisfaction with the daylight environment. 

2.3. Case study 

2.3.1. Studied building 
Our method for optimizing and selecting a shading strategy was applied to a university library in Shanghai, China (W121.433◦, 

N31.028◦). We chose the west side of the top (fourth) floor of the studied region because it was exposed to very strong sunlight in the 
afternoon due to the very high glazing ratio (42.6%) in the western façade. The floor plan of the test region is provided in Fig. 2, along 
with photos of existing conditions. Occupants used umbrella and clothes as adaptive measures against the excessive sunlight. Test 
points for DSV and DGP were arranged in the reading area on the west side of the building, as shown in Fig. 2. In addition, we set eight 
radial directional DGP sensors for one test point and one DSV sensor for one test point (576 DGP sensors and 72 DSV sensors), where 
the multi-directional sensors of DGP were set up to take into account the glare sources from all directions of the daylit space. The 
simulation was conducted during daylight hours for an entire year and the sky condition is decided by the weather file. 

This study uses the artificial neural network (ANN) to effectively get the objective function and sets a greater space for optimi-
zation, specifically, we set the population size, population generation, mutation rate, and crossover rate as 50, 100, 0.33, and 0.9, 
respectively. It took approximately 100 ms to analyze each “individual”, and the calculation of all generations took approximately 10 
min. The ANN was built by the lunchbox tools in grasshopper, which provides diverse learning algorithms and activation functions to 
choose from. Meanwhile, the dataset was divided into training data and test data, where the split rate of test data is 0.15. The dataset is 
the result of the daylight simulation of the study case by radiance. Table 2 shows the specific parameters in the daylight simulation. 

2.3.2. Shading strategies 
To remedy the poor existing window design, four shading strategies, namely, perforated aluminum sheet (PAS), vertical slats (Vs), 

serrated windows with southern orientation (Sw_S), and serrated windows with northern orientation (Sw_N), were selected for 
optimization and comparison. Fig. 3 shows the four strategies and the corresponding design variables. Perforated aluminum sheet 
changes the window-to-wall ratio to prevent glare and at the same time changes the distribution of daylight. PAS can efficiently control 
excessive daylight and increase useful annual daylight [48]. The number and size of the holes in the PAS are the key parameters of 
shading effectiveness. As a result, the design variables of the PAS are the number of holes in the vertical and horizontal columns and 

Table 2 
Glare ratings for different DGP ranges.  

Ranges of DGP Glare rating 

0.35 > DGP Imperceptible glare 
0.35 < DGP <0.4 Perceptible glare 
0.4 < DGP <0.45 Disturbing glare 
0.45 < DGP Intolerable glare  
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also the hole diameters. 
When vertical slats are used, the angle of the slats can be adjusted to obstruct most daylight from directly entering the room. Lee 

et al. [49] considered Vs to be the best shading device among vertical louvers, horizontal louvers, eggcrate louvers, overhangs, vertical 
slats, horizontal slats, and light shelves for improving UDI at the east and west orientations. The design variables of Vs are the number, 
width, and rotation angle of the slats. 

Serrated windows transform the received sunlight from direct to diffuse by alternating the orientation of the windows [50–52]. In 
this study, the Sw “changes” the façade orientation from west to south, to avoid the direct afternoon sunlight from the west while 
taking advantage of the diffuse sunlight from the south or north. The Sw with southern is contributed to reducing the glare from the 
western sun, but it is also restricted the sunlight directly into indoors. Compared to the Sw with southern, the opposite is true for Sw 
with northern. To more accurately research the shading strategy, we separately set the opening surface in the opposite direction, 
namely, one was the serrated windows facing south (Sw_S) and the other one is the serrated windows facing north (Sw_N). The design 
parameters of the Sw are the rotation angle, extension length, and window opening ratio of the blocking surface. 

For modeling the artificial neural network, according to the characteristic of the shading device, we set the adequate data format. 
The input data of ANN is the parameter of the shading device, and the output result of ANN is the daylight performance with the 
shading device, namely, sGA0.35/95% with sDVA0.30/80%. To capture as much of the performance of the shading device, we set a 

Table 3 
The boundary condition of daylighting simulation.  

Daylight Simulation information Boundary condition 

Wall reflectance 0.7 
Windows transmittance 0.65 
Ceiling reflectance 0.7 
Floor reflectance 0.3 
Mesh grid size 0.6 m, 0.8 m 
Distance to move sensors from the floor surfaces 0.7 m 
Number of radial directions for DGP sensors for one simulated point 8(22.5, 67.5, 112.5, 157.5, 202.5. 247.5, 292.5, 337.5) 
Number of DSV sensors for one simulated point 1 
Simulated period Annual for each hour 
Radiance parameters -ab 2 -ad 5000 -lw 2e-05 
Location (Weather file) Shanghai  

Fig. 3. Four studied shading strategies and corresponding design parameters, where the serrated windows represent the different shading strategies of Sw_S and Sw_N.  

Table 4 
Artificial Neural Network inputs.  

Shading strategy Input variables Boundary condition Range Train steps Train quantity Test steps 

PAS Vertical columns Generic (3-20) 2 8 1 
Horizontal columns Reflectance 0.35 (9-80) 8 9 1 
Hole diameters  (0.1–0.5 m) 0.05 10 0.001 

Vs Rotation angle Generic (-0.48-0.42π) 0.1 10 0.001 
Slat width Reflectance 0.35 (0.1–1.9 m) 0.2 10 0.01 
Slat number  (10–80) 10 8 1 

Sw Rotation angle Generic 
Reflectance 0.35 

(-1.5-1.9π) 0.4 11 0.001 
Extension length (0.3–4.8 m) 0.5 10 0.01 
Hole ratio (0.1–0.95) 0.1 9 0.01  
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reasonable variable range for every parameter. We then use the method of quadrature sampling to obtain the training input data, and 
capture the correspondingly training output data by daylighting simulation. Table 4 shows the specific setups of training and testing 
sampling. 

3. Results 

This section first presents the formula that was developed for the prediction of subjective satisfaction with the daylight environ-
ment using the horizontal illuminance level. Next, the result of training an artificial neural network (ANN) and the daylight perfor-
mance of the original environment are shown. Finally, the optimization of the four shading strategies is described, and the strategies 
are compared. 

3.1. Daylight subject vote (DSV) formula 

A formula was developed from the surveyed data to correlate the daylight subjective vote (DSV) with the horizontal illuminance 
level. According to ISO 8995 [53], the data was first “binned” into (150,200], (200,300], (300,500], (500,750], (750,1000], (1000, 
1500], (1500,2000], (2000,3000], (3000,5000], (5000,10000], (10000,15000], (15000,20000], (20000,25000] and (25000, -] in-
tervals of illuminance. Next, the mean DSV value for each bin was calculated; these values are presented in Fig. 4. Because the illu-
minance level increased much faster than the change in the occupants’ DSV, the x-axis was transformed logarithmically, as is 
commonly practiced in daylighting research [54]. It can be seen that the satisfaction was high at an illuminance of around 1000 lux, 
but decreased when the illuminance became higher or lower. A quadratic function was used to correlate the DSV with the logarithmic 
illuminance (Eh, lux), as shown in Equation (5). The obtained equation was then used in the objective function to calculate the DSV 
with the simulated illuminance. 

DSV = 0.003025[2.4098 ln(Eh) − 10.233]2 − 0.0405[2.4098 ln(Eh) − 10.233] + 0.380175 (5) 

While the occupants’ vote value is used to develop the correlation between desktop illuminance and occupants’ perception, the 
final satisfaction ratings of satisfactory, neutral, unsatisfactory, and very unsatisfactory levels of DSV were determined by corre-
sponding illuminance ranges according to Refs. [44,53,55,56]. The satisfactory illuminance range was 500–2000 lux, the neutral 
illuminance ranges were 200–500 lux and 2000–5000 lux, the unsatisfactory illuminance ranges were 100–200 lux and 5000–10000 
lux, and the very unsatisfactory illuminance ranges were lower than 100 lux or greater than 10000 lux. Table 5 determined the 
corresponding ranges of DSV for specific satisfactory levels. 

3.2. Artificial neural network (ANN) results 

An artificial neural network enables fast acquisition of dynamic daylight performance with the shading device. Table 6 shows the 
specific setups for different ANN models and the accuracy of the pre-trained model on the test dataset. It can be seen that R2, root mean 
square error (RMSE), and mean absolute error (MAE) between test data and predicted data have a good fit, as shown in Fig. 5. 

3.3. Original daylight environment 

In this section, the performance of the original daylight environment was simulated and displayed by the hourly spatial average of 
daylight subjective vote (DSV) and daylight glare probability (DGP) throughout the entire year. Fig. 6(a) shows the hourly DSV for an 
entire year for the original daylight environment without any shading devices. From a year-round perspective, DSV was lower in the 

Fig. 4. Relationship between DSV and horizontal log illuminance.  
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period 8:00 a.m. to 2:00 p.m. of spring (March to May) and summer (June to August), and relatively higher in the period (3:00 p.m. to 
6:00 p.m.). The DSV performance was determined by the illuminance levels, and natural illuminance levels are related to solar in-
tensity. It can be deduced that the intensity of sunlight from 8:00 a.m. to 2:00 p.m. was appropriate and did not shine directly into the 
interior space. In autumn (September to November) and winter (December to February), the satisfaction levels were higher than those 
in spring and summer. 

The distribution of hourly DGP for an entire year in the original daylight environment was present in Fig. 6(b). It is obvious that the 
perceptible, disturbing and intolerable glare levels in the west-facing spaces were distributed between 12:00 and 6:00 p.m., while most 
of the imperceptible glare was during the morning hours. 

Fig. 6(c) shows the distribution of different satisfaction levels of DSV in the original daylight environment. The ratio of unsatis-
factory and very unsatisfactory levels was nearly 20%. It was confirmed that the presence of too high and too low illuminance levels in 
the original daylight environment caused high DSV value and dissatisfaction. Fig. 6(d) illustrates the DGP distribution for each glare 
level in the original daylight environment. The perceptible disturbing, and intolerable glare accounted for more than 20%. The 
percentage of intolerable glare accounted for more than half of the glare with DGP >0.35. 

3.4. Optimization of shading strategies 

The optimization results for the four strategies, including perforated aluminum sheet (PAS), vertical slats (Vs), serrated windows 
facing south (Sw_S), and serrated windows facing north (Sw_N), are discussed in this section, where the MOGA optimization, the final 
Pareto set, and the daylight environment of the near-optimal shading device for each strategy are presented and compared. 

3.4.1. Perforated aluminum sheet (PAS) 
The optimization process led to a Pareto set with 848 solutions for the PAS strategy. The complementary sGA0.35/95% with 

complementary sDVA0.30/80% values for the 848 solutions are shown in Fig. 7. The performance of the original environment 
(complementary sGA0.35/95% = 0.45, complementary sDVA0.30/80% = 0.42) without the application of any shading strategies was 
also displayed in Fig. 7. The complementary sGA0.35/95% values for the 848 optimized solutions were all smaller than the values for 
the original performance. Thus, the PAS can effectively reduce glare. However, only 65 solutions had better performance than the 
original design in providing a dynamic satisfactory illuminance level. These solutions with better performance are enclosed in a red 
box in Fig. 7. A near-optimal solution that provided the maximum reduction of sGA0.35/95% while retaining the same sDVA0.30/80% 
with the original space was then identified and is shown in yellow. 

Table 5 
Satisfaction ratings for different DSV ranges.  

Ranges of DSV Satisfaction rating 

0.25 > DSV Satisfactory 
0.25 < DSV <0.3 Neutral 
0.3 < DSV <0.35 Unsatisfactory 
0.35 < DSV Very unsatisfactory  

Table 6 
Partitioning of training and validation datasets and the specific settings of the artificial neural network.  

Train setup and results Test results 

Training 
tasks 

# of Train 
dataset 

# of Test 
dataset 

Hidden 
neurons 

Learning 
Algorithm 

Activation 
Function 

Epoch MSE R2 RMSE MAE 

sGA of PAS 612 108 18 A1 B1 1300 5.2e-6 0.985 7.6e- 
3 

3.4e- 
3 

sDVA of PAS 612 108 16 A2 B0 760 4.8e-6 0.985 1.2e- 
2 

3.6e- 
3 

sGA of Sw_N 841 149 20 A1 B1 1300 4.78e- 
7 

0.996 7.0e- 
3 

4.1e- 
3 

sDVA of 
Sw_N 

841 149 12 A2 B0 760 2.36e- 
6 

0.985 1.6e- 
2 

7.1e- 
3 

sGA of Sw_S 841 149 20 A2 B2 1300 1.0e-5 0.998 7.3e- 
3 

4.1e- 
3 

sDVA of 
Sw_S 

841 149 12 A0 B2 760 7.9e-5 0.983 1.1e- 
2 

4.2e- 
3 

sGA of Vs 680 120 21 A0 B1 1500 1.8e-5 0.947 6.2e- 
2 

3.8e- 
2 

sDVA of Vs 680 120 21 A0 B1 1300 5.3e-5 0.946 6.3e- 
2 

4.6e- 
2 

Data 
Division 

Random, split rate = 0.15 

Learning Algorithm: A0 = Backpropagation; A1 = Evolutionary algorithm; A2 = Levenberg-Marquardt; 
Activation Function: B0 = Sigmoid; B1 = Bipolar Sigmoid; B2 = Linear; 
Loss function: MSE = Mean Square Error; R2 = The coefficient of determination; RMSE = Root Mean Square Error; MAE = Mean Absolute Error; 
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To demonstrate the glare reduction effect, Fig. 8(a) shows the distribution of DGP from a whole year for the near-optimal PAS. Most 
perceptible, disturbing, and intolerable glare levels occurred between 1:00 p.m. and 6:00 p.m. Furthermore, the DGP in the autumn 
and winter months had a relatively narrow distribution, but the DGP values often exceeded the intolerable level of 0.45. It can be 
deduced that the near-optimal PAS blocked the afternoon glare when the sun elevation was high during the spring and summer 
months, but in autumn and winter, the low-angle sun could still pass through the holes and cause glare. Fig. 8(b) displays the dis-
tribution for each glare level of DGP in the daylight environment with the near-optimal PAS. Overall, the imperceptible and perceptible 
glare levels accounted for nearly 90% of the simulated period. 

3.4.2. Vertical slats (Vs) 
Fig. 9 shows the Pareto set of the Vs, which had 429 solutions after optimization. All solutions of the Pareto set had a better sGA 

than the daylight environment without a shading device. Thus, the Vs effectively reduced the glare. Although these nondominated 
solutions reduced the glare, only 68 of the solutions displayed in red had better sDVA performance than the original environment. 
Considering the practical needs of occupants, a near-optimal solution is shown in yellow, with similar sDVA to the original envi-
ronment, while maximally reducing the glare. 

Fig. 10(a) displays the distribution of hourly DGP for an entire year for the near-optimal Vs. We can see that most of the perceptible 
glare was occupied in the afternoon (1:00 p.m. to 5:00 p.m.) of autumn and winter months This implies that the slats of the near- 
optimal Vs efficiently reduced the glare from the low solar angle during the autumn and winter months. Fig. 10(b) shows the dis-
tribution of different glare levels of DGP in the daylight environment with the near-optimal Vs. The ratio of disturbing and intolerable 
glare levels was lower than 8%. The near-optimal Vs blocked most of the glare and improved visual comfort, as compared with the 
original environment. 

3.4.3. Serrated windows facing north (Sw_N) 
For the performance of the serrated window, we first examined the north-facing windows (Sw_N). The optimization of Sw_N 

Fig. 5. The fitting accuracy of artificial neural network for the daylight environment with PAS, Vs Sw_N and Sw_S.  
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resulted in 547 nondominated solutions in the Pareto set. The complementary sGA0.35/95% and complementary sDVA0.30/80% of all 
the nondominated solutions are shown in Fig. 11. All solutions in the Pareto set exhibited a lower DGP than that of the original daylight 
environment. As indicated by the DGP performance, the Sw_N can effectively reduce glare, and the optimization of Sw_N was pro-
ductive. However, no solutions provided greater satisfaction with the daylight environment than the situation without any shading 

Fig. 6. The distribution of DSV and DGP for the original daylight environment: (a) the DSV from 1/1 to 12/31 for a daylit time in the daylight environment, (b) the 
DGP from 1/1 to 12/31 for a daylit time in the daylight environment, (c) the ratio for each satisfaction level, and (d) the ratio for each glare level. 
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Fig. 7. The Pareto set of PAS, the solution of the original performance, solutions with better performance than the original one, the solution of best sGA and best sDVA, 
and the near-optimal solution in the Pareto set. 

Fig. 8. The distribution of DGP for the near-optimal PAS: (a) from 1/1 to 12/31 for a daylit time in the daylight environment, and (b) the ratio for each glare level.  
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Fig. 9. The Pareto set of Vs, the solution of the original performance, solutions with better performance than the original one, the solution of best sGA and best sDVA, 
and the near-optimal solution in the Pareto set. 

Fig. 10. The distribution of DGP for the near-optimal Vs: (a) from 1/1 to 12/31 for a daylit time in the daylight environment, and (b) the ratio for each glare level.  
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device. For maintaining the satisfaction level, the solution with the greatest satisfaction was set as the near-optimal solution. 
Fig. 12(a) displays the distribution of hourly DGP for an entire year in the daylit space with the near-optimal Sw_N. During the 

whole day, it was obvious that the perceptible, disturbing, and intolerable glare levels almost took place during the period (1:00 p.m. to 
6:00 p.m.). The spring, autumn, and winter days were mostly dominated by disturbing and intolerable glare during this time (1:00 p.m. 
to 6:00 p.m.). This was because the blocking surface of Sw_N can’t impede most of the = low-angle sunlight during which spring, 

Fig. 11. The Pareto set of Sw_N, the solution of the original performance, the solution of best sGA and best sDVA, and the near-optimal solution in the Pareto set.  

Fig. 12. The distribution of DGP for the near-optimal Sw_N: (a) from 1/1 to 12/31 for a daylit time in the daylight environment, and (b) the ratio for each glare level.  
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autumn, and winter months. Fig. 12(b) shows the distribution of DGP for each glare level in the daylight environment with the near- 
optimal Sw_N. The perceptible, disturbing, and intolerable glare levels accounted for more than 15% of the investigated period. 

3.4.4. Serrated windows facing south (Sw_S) 
Fig. 13 displays the Pareto set of Sw_S, which had 782 nondominated solutions after optimization. All nondominated solutions can 

effectively reduce glare. The optimization of Sw_S was productive, but the solution did not well balance glare reduction and 

Fig. 13. The Pareto set of Sw_S, the solution of the original performance, the solution of best sGA and best sDVA, and the near-optimal solution in the Pareto set.  

Fig. 14. The distribution of DGP for the near-optimal Sw_S: (a) from 1/1 to 12/31 for a daylit time in the daylight environment, and (b) the ratio for each glare level.  
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illuminance maintenance: all solutions had a worse performance than the original performance. The solution with the greatest DSV 
satisfaction was selected as the near-optimal solution. 

Fig. 14(a) displays the annual DGP distribution for the near-optimal Sw_S. As reflected by the change in DGP, the daylight envi-
ronment for the near-optimal Sw_S provided a stable and comfortable daylight environment on typical summer days. Furthermore, the 
glare occurred and ended earlier in autumn and winter than in spring and summer. This represents that sunlight at lower angles can 
enter the room earlier and sunset is also earlier in the autumn and winter. Fig. 14(b) displays the proportion of different glare levels for 
the near-optimal Sw_S. The percentage of imperceptible and perceptible glare levels accounted for nearly 90%. 

3.5. Comparison of the four shading strategies 

Fig. 15 compares the Pareto sets for the four shading strategies, namely, the perforated aluminum sheet (PAS), vertical slats (Vs), 
serrated windows facing north (Sw_N), and serrated windows facing south (Sw_S). As displayed in Fig. 15, Sw_S and PAS had a 
relatively bad performance for both spatial glare autonomy (sGA) and spatial daylight vote autonomy (sDVA). The Pareto sets for the 
PAS and Sw_S coincided with each other for complementary sGA0.35/95% values between 0.25 and 0.33, indicating that the two 
strategies had similar performance in that range. Furthermore, Sw oriented to the north performed better than that oriented to the 
south. The university library has turned about 20◦ to the east, which resulted in much more sunlight exposure from the south. 

In areas where complementary sGA0.35/95% was lower than 0.27, the Sw_N had lower, and thus better, complementary 
sDVA0.30/80% values than the Vs. This finding implies that the Sw_N can provide better illuminance levels than the Vs in areas with 
low glare. In the areas where complementary sGA0.35/95% was greater than 0.27, Vs has better daylight performance than other 
shading strategies. In the areas where complementary sGA0.35/95% was greater than 0.33, PAS has better daylight performance than 
Sw_N and Sw_S, where Sw_S and Sw_N had a similar performance “curve”. 

While the complementary sGA0.35/95% for the near-optimal PAS, Vs, Sw_S, and Sw_N were significantly lower than in the original 
case, the complementary sDVA0.30/80% remained relatively unchanged, as shown in Fig. 16. Fig. 16(a) compares the ratio for each 
satisfaction level among the four near-optimal shading devices and the original design. The ratio was similar for these five cases in 
unsatisfactory and very unsatisfactory levels. At the satisfactory level, the original ratio was slightly greater than Sw_N and Sw_S for the 
near-optimal shading devices, while Vs and PAS of the near-optimal devices had a greater ratio than the original case. This result 
implies that PAS and Vs of the near-optimal device efficiently block the sunlight during periods of high solar intensity, resulting in a 
better satisfaction level. While Sw_N and Sw_S of the near-optimal device excessively obstruct the sunlight, resulting in a worse 
satisfaction level. 

Fig. 16(b) shows the ratio of all glare levels for the four near-optimal shading strategies. The ratio of all glare levels for the original 
case is also displayed for comparison. Overall, the near-optimal PAS, Vs, Sw_N, and Sw_S greatly reduced the complementary sGA0.35/ 
95%, by 9%, 22%, 8%, and 8%, respectively, when compared to the original complementary sGA0.35/95%. The near-optimal Vs 
exhibited the best performance in complementary sGA0.35/95% reduction. In addition, each test point had eight DGP sensors which 
different orientations, where the sensors viewing for indoor occupied half ratio. Therefore, the percentage of glare was reduced to a 
relatively low level. If only the sensors of DGP for which glare occurs were considered, the numerical ratio of glare reduction for each 
shading device would be twice or more. 

4. Discussion 

4.1. Application of artificial neural network for maximumly mining the performance of shading strategy 

While comparing the performance of shading strategies, the setups of boundary conditions were important. For obtaining the fullest 

Fig. 15. Comparison of the Pareto sets for Sw_N, Sw_S, Vs, and PAS.  
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possible daylight performance, a large number of numerical experiments should be conducted to find the parameters of best and worst 
daylight performance for each shading strategy. The artificial neural network (ANN) was applied to reduce the simulation time. This 
study used limited computing resources (i7-8700K CPU @3.7 GHz). The simulation and data processing of the 72 sensors of illumi-
nance and the 576 sensors of DGP by radiance for an entire year took about 2 min for one “individual”. All searching quantities are 
5000 in the multi-objective genetic algorithm process, and would take approximately 10000 min (about 167 h). By using the ANN to 
model the DSV and DGP, one “individuals” search was reduced to 100 ms and the consuming time of all parametric searching was 
about 10 min. In addition, the ANN predictions preserved high accuracy, as evidenced by the result that the coefficient of determi-
nation (R2) is higher than 0.94 in all tasks (Fig. 5). In addition, the greater parametric searching space and larger scale (temporal and 
spatial) simulation can maximumly mine the performance “curve” (Pareto set) for each shading strategy to conduct the comparations 
of daylight performance. 

4.2. The principle of the shading strategy 

The shading strategy reduces the glare and maintains a satisfactory level in the daylit space by blocking direct sunlight or diffusing 
direct sunlight into indoors. Therefore, the design of the shading surface is very important for each shading strategy. In this study, we 
compared four shading strategies, where the shading design and the result of the comparison as shown in Figs. 3 and 15, respectively. 
We then found a dramatic difference in daylight performance between the four shading strategies, especially Vs and Sw_N had a better 
daylight performance than PAS and Sw_S. The performance gap for each shading strategy could be explained by the shading design of 
blocking and diffusing direct sunlight. We choose the 3:00 p.m. on 24 January to conduct the analysis of shading principles for four 
strategies, and the sun path in the time is shown in Fig. 17 (a). Fig. 17 (b) shows PAS blocks a part of direct sunlight by the unperforated 

Fig. 16. The comparison of the ratio of all satisfaction levels (a) and all glare levels (b) for the original case and the near-optimal solutions for Sw_S, Sw_N, Vs, and 
PAS, respectively. 
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surface, but it lacks the characterizer of diffusing direct sunlight and the glare may be happened by the sunlight through the hole. Sw_S 
almost couldn’t block the sunlight from the south to the west, and it worked until the sun fully move to the west which was nearly 
sunset, the diagram as shown in Fig. 17 (c). On the contrary, Fig. 17 (d) displays Sw_N could block the direct sunlight from the south to 
the west by the south shading surface, and the shading surface also could diffuse some sunlight into the abut window to maintain the 
reasonable illuminance level. As shown in Fig. 17 (e), the diagram of shading principles for Vs, where the slat of Vs reflects the direct 
sunlight to the abut slat or indoor space to reduce glare. 

4.3. Limitations 

Our case study shows the multi-objective genetic algorithm can provide continuous and comprehensive performance curves, and 
thus was very effective for comparing different shading strategies. However, limitations exist. Shading design not only impacts visual 
comfort but also has significant effects on thermal comfort, the occupants’ view, and building energy consumption. In addition to 
blocking light, shading prevents solar heat from entering the building and impedes the occupants’ views to outside environment. 
Although this study was focused only on the daylight environment, the design method proposed can also be applied to the optimization 
of the shading strategy in terms of solar-related thermal comfort, building energy consumption, and occupants’ view. Our study 
proposed a formula to correlate illuminance with subjective daylight satisfaction based on the analysis of field survey data. However, 
this formula may not be accurate under low illuminance levels, since the data was collected during normal working hours on sunny 
days when the illuminance was above 150 lux. 

5. Conclusions 

Many shading strategies are available to control unwanted glare, but in doing so they may overly reduce illuminance. This study 
proposed a method to optimize and compare the performance of different shading strategies by a multi-objective genetic algorithm 
(MOGA). An artificial neural network was combined into the optimization to efficiently reduce the simulation time. Meanwhile, based 
on data collected from a field survey, a formula was developed to calculate subjective satisfaction (daylight subjective vote, DSV) from 
the illuminance level. Considering the temporal and spatial performance of the daylight environment, we set the objective function by 
using the spatial glare autonomy (sGA) and spatial daylight vote autonomy (sDVA) based on DGP and DSV, separately. The proposed 
method was then used in a case study in a university library in Shanghai, China, to optimize and compare the performance of four 
shading strategies, namely, perforated aluminum sheet (PAS), vertical slats (Vs), serrated windows facing north (Sw_N), and serrated 
windows facing south (Sw_S). The following conclusions and contributions were made in this study:  

1) The developed DSV formula described a quadratic relationship between horizontal illuminance level and subjective satisfaction 
with the daylight environment. The highest satisfaction was found to occur at approximately 1000 lux, and the satisfaction level 
declined with an increase or decrease in illuminance. 

Fig. 17. The sun path in Shanghai at 3:00 p.m. on 24 January (a), the shading diagram of (b) PAS, (c) Sw_S, (d) Sw_N, and (e) Vs, respectively.  
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2) Under the climate of Shanghai, PAS and Sw_S had relatively bad performance among the four strategies; Serrated windows with 
northern have a better performance than serrated windows with southern.  

3) A good shading device should be able to turn direct sunlight into diffusive one. Compared with the original design without shading 
strategies, the near-optimal designs for PAS, Vs, Sw_N, and Sw_S greatly reduced the complementary sGA0.35/95%, by 9%, 22%, 
8%, and 8%, respectively, while maintaining a similar level of satisfaction with the daylight environment. 
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